Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Ping Xiao,* Xin-Hua Li and Qian Shi

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp_xiao@wznc.zj.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.051 wR factor = 0.115 Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(1*H*-imidazole-4,5-dicarboxylato- κN^3)cobalt(II) *N*,*N*-dimethylformamide disolvate

In the title compound, $[Co(C_5H_3O_4)_2(H_2O)_2]\cdot 2C_3H_7NO$, the octahedrally coordinated Co^{II} atom lies on an inversion centre. The equatorial plane of the octahedron comprises two bidentate 1*H*-imidazole-4,5-dicarboxylate monoanions, coordinated through the N-3 atoms, and one carboxylate O atom, with two water molecules in the axial coordination sites. A one-dimensional chain structure is formed by intermolecular hydrogen bonds in the equatorial plane, between the uncoordinated carboxyl O atom. The two O atoms of the coordinated water molecules in each chain are engaged in two hydrogen bonds with the uncoordinated carboxyl O atoms of two adjacent chains, forming a two-dimensional network structure.

Comment

N-Heterocyclic carboxylic acids, such as pyrazine-2,3-dicarboxylic acid, pyrazine-2-carboxylic acid, pyridine-3,5-dicarboxylic acid, pyridine-2,6-dicarboxylic acid, pyrazole-3,5dicarboxylic acid and imidazole-4,5-dicarboxylic acid, are recognized as efficient N,O-donors, exhibiting diverse modes of coordination (Min *et al.*, 2001; Sanna *et al.*, 1998; Sengupta *et al.*, 2001; Tian *et al.*, 2003; Wang *et al.*, 2001; Xiang *et al.*, 2004). In this work, we have chosen 1*H*-imidazole-4,5-dicarboxylic acid as the building block to obtain the title compound, (I).

In (I), the Co^{II} atom lies on an inversion centre and has a slightly distorted octahedral environment (Fig. 1 and Table 1). The equatorial plane contains two bidentate 1*H*-imidazole-4,5-dicarboxylate monoanionic ligands [O1, O1ⁱ, N1 and N1ⁱ; symmetry code: (i) 2 - x, 2 - y, 2 - z], forming fivemembered chelate rings. Two coordinated water molecules (O6 and O6ⁱ) occupy the apical sites. The coordinated carboxylate group and the free carboxylic acid residue are almost coplanar, with a mean deviation of 0.016 (3) Å.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 8 September 2004 Accepted 20 September 2004 Online 30 September 2004

Figure 1

The coordination environment of the Co1 atom in (I), showing the atom numbering, with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry code (2 - x, 2 - y, 2 - z).

Figure 2

The one-dimensional chain structure formed by N-H···O hydrogen bonds (dashed lines).

Figure 3

The two-dimensional network structure formed by N-H···O and O-H···O hydrogen bonds (dashed lines). For clarity, the N,N-dimethylformamide molecules have been omitted.

The uncoordinated N atom in the imidazole ring forms an intermolecular hydrogen bond with an uncoordinated carboxyl O atom, with a distance of 2.824 (4) Å, forming a one-dimensional chain structure (Fig. 2). The two O atoms of the coordinated water in each chain are also involved in hydrogen bonds, with the uncoordinated carboxyl O atoms of two adjacent chains, to yield a two-dimensional network structure (Fig. 3). There are also two other intermolecular hydrogen-bonding interactions between two O atoms of the coordinated water molecules and O atoms of two N,N-dimethylformamide solvent molecules.

Experimental

A solution (15 ml) of CoCl₂·6H₂O (0.25 mmol) and imidazole-4,5dicarboxylic acid (0.25 mmol) in N,N-dimethylformamide and water was added slowly to a solution of 1,10-phenanthroline (0.5 mmol) in methanol (5 ml). The mixture was left to stand at room temperature for about three weeks to afford red crystals of the title compound.

Z = 1

 $D_{\rm r} = 1.594 {\rm Mg m}^{-3}$

Cell parameters from 985

 $0.21 \times 0.12 \times 0.08 \text{ mm}$

2039 independent reflections 1618 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\mu = 0.82 \text{ mm}^{-1}$

T = 298 (2) K

Prism, red

 $R_{\rm int}=0.030$

 $\theta_{\rm max} = 25.2^\circ$

 $h=-8\rightarrow 8$

 $k = -10 \rightarrow 10$

 $l = -11 \rightarrow 11$

 $\theta = 2.3 - 23.3^{\circ}$

Crystal data

 $[Co(C_5H_3O_4)_2(H_2O)_2] \cdot 2C_3H_7NO$ $M_r = 551.34$ Triclinic, $P\overline{1}$ a = 6.9316 (9) Åb = 9.1453 (11) Åc = 9.3055 (11) Å $\alpha = 87.093 (2)^{\circ}$ $\beta = 77.229 (2)^{\circ}$ $\gamma = 87.885 \ (2)^{\circ}$ $V = 574.36 (12) \text{ Å}^3$

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.847, T_{\max} = 0.937$ 4178 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.054P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.051$	+ 0.2338P]
$wR(F^2) = 0.115$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
2039 reflections	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
174 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	

refinement

Table 1

. .

Selected	geometric	parameters	(A,	0)
	0	1	× /	

Co1-O6	2.069 (3)	Co1-O1	2.146 (2)
Co1-N2	2.100 (3)		
O6-Co1-N2	90.97 (11)	N2-Co1-O1	78.68 (9)
O6-Co1-O1	88.77 (11)		

lable 2			
Hydrogen-bonding	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O6-H6D\cdots O5^{ii}$	0.813 (17)	1.86 (2)	2.661 (4)	167 (4)
$O6-H6E\cdots O4^{iii}$	0.811(17)	1.993 (18)	2.804 (3)	178 (4)
$O3-H3A\cdots O2$	0.841 (19)	1.63 (2)	2.467 (3)	173 (4)
$N1-H1A\cdots O4^{iv}$	0.841 (19)	2.02 (2)	2.824 (4)	160 (4)

Symmetry codes: (ii) 1 - x, 1 - y, 1 - z; (iii) x, y, 1 + z; (iv) 1 - x, 2 - y, 1 - z.

H atoms attached to the C atoms were included in the refinement in calculated positions in the riding-model approximation [C-H] = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$]. The water H atoms were located and refined with distance restraints $[O-H = 0.82 (2) \text{ Å and } H \cdots H =$ 1.39 (1) Å; $U_{iso}(H) = 1.2U_{eq}(O)$]. The H atom attached to the imidazole N atom was located and refined with restraints [N-H = 0.85 (2) Å; $U_{iso}(H) = 1.2U_{eq}(N)$].

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We acknowledge financial support by the Wenzhou Science and Technology Project of China (No. S2003A008).

References

- Bruker (2000). SMART (Version 5.618), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Min, D., Yoon, S. S., Lee, J. H., Suh, M. & Lee, S. W. (2001). Inorg. Chem. Commun. 4, 297–300.
- Sanna, S., Micera, G., Buglyo, P., Kiss, T., Gajda, T. & Surdy, P. (1998). Inorg. Chim. Acta, 268, 297–305.
- Sengupta, P., Dinda, R., Ghosh, S. & Sheldrick, W. S. (2001). Polyhedron, 20, 3349–3354.
- Tian, J. L., Yan, S. P., Liao, D. Z., Jiang, Z. H. & Cheng, P. (2003). Inorg. Chem. Commun. 6, 1025–1029.
- Wang, W. Z., Liu, X., Liao, D. Z., Jiang, Z. H., Yan, S. P. & Wang, G. L. (2001). *Inorg. Chem. Commun.* 4, 327–331.
- Xiang, G. Q., Zhu, N. W., Hu, M. L., Xiao, H. P. & Chen, X. X. (2004). Acta Cryst. E60, m647–m649.